
Predicting Adverse Drug Events using
Heterogeneous Event Sequences

Isak Karlsson
Dept. Computer and System Sciences

Stockholm University

Stockholm, Sweden

Henrik Boström
Dept. Computer and System Sciences

Stockholm University

Stockholm, Sweden

Abstract—Adverse drug events (ADEs) are known to be
severely under-reported in electronic health record (EHR) sys-
tems. One approach to mitigate this problem is to employ machine
learning methods to detect and signal for potentially missing
ADEs, with the aim of increasing reporting rates. There are,
however, many challenges involved in constructing prediction
models for this task, since data present in health care records is
heterogeneous, high dimensional, sparse and temporal. Previous
approaches typically employ bag-of-items representations of clin-
ical events that are present in a record, ignoring the temporal
aspects. In this paper, we study the problem of classifying
heterogeneous and multivariate event sequences using a novel
algorithm building on the well known concept of ensemble
learning. The proposed approach is empirically evaluated using
27 datasets extracted from a real EHR database with different
ADEs present. The results indicate that the proposed approach,
which explicitly models the temporal nature of clinical data, can
be expected to outperform, in terms of the trade-off between
precision and recall, models that do no consider the temporal
aspects.

Keywords—Adverse drug events, temporal patterns, data series,
ensemble methods, random forest

I. INTRODUCTION

Adverse events caused by the intake of medications account
for an increasing amount of hospitalizations and deaths world-
wide [3], [16], and is a significant burden on the healthcare
system [28]. Harmful adverse events caused by drugs are often
referred to as adverse drug events (ADEs), and the activities
related to the detection, signaling and assessment of said
events is referred to as pharmacovigilance. Although benefit-
risk analysis of newly developed drugs is already conducted
during clinical trials, post-marketing detection and surveillance
is necessary in order to detect unanticipated events, e.g.,
interacting drugs, since clinical trials are normally performed
with a limited sample followed up during a limited period
of time. As a result, many drugs have been withdrawn from
the market due to serious adverse reactions, e.g, Cerivastatin,
a drug for to lower cholesterol and prevent cardiovascular
diseases, was withdrawn worldwide in 2001 because of causing
fatal rhabdomyolysis [12].

During post-marketing surveillance, a vast array of au-
tomatic approaches for detecting potential safety hazards of
drugs have been investigated, cf. [1], [26], using various data
sources, the most prominent of which is disproportionality
analysis of spontaneous individual case reports [30] submitted

to e.g., the World Health Organization (WHO)1. One of the
main obstacles with current systems for collecting data re-
garding adverse event is the fact that serious ADEs are heavily
under-reported (while known ADEs are over-reported) [14] by
both clinicians, in the case of EHRs, and by patients, in the
case of individual case reports. Studies indicate that as few as
∼ 10% of all serious ADEs are reported [31]. To improve the
reporting rate, researchers [36], [37] have investigated systems
for automatically detecting possible ADEs from electronic
health records (EHRs), which have emerged as a valuable
and rich source of data when monitoring the safety of drugs,
avoiding several of the limitations present for case reports. For
example, EHRs typically contain longitudinal observational
data of large samples of patients, including demographic
information, medical history, drug consumption with exposure
time and dose information, clinical measurements, including
lab results and drug concentrations, and clinical narratives
evolving over time [9]. Traditionally, various rule based meth-
ods have been investigated, e.g., [2], [17]. Recently, however,
instead of approaches that require hand-crafted rules, data-
driven machine learning methods, which support exploration
and discovery of statistical patterns in large databases, have
been extensively investigated [18], [19], [22].

Although the rich information stored in EHRs open up for
possibilities of signaling ADEs in order to improve reporting
rate and patient care using statistical pattern mining methods,
there exists several issues with regards to the representation
of heterogeneous and time evolving variables, such as clinical
measurements, e.g., blood pressure and heart rate or other mea-
surements taken at the local clinic or external laboratories, drug
prescriptions and medical conditions. First, since most ADEs
are rare and the number of reported cases few, datasets ex-
tracted from EHRs for predicting adverse drug events typically
contain a small number of examples with thousands of features
(corresponding to e.g., drugs, diagnoses and measurements),
which in most cases are only recorded for a small fraction of
the patients, making such datasets highly sparse. Second, since
clinical measurements are normally recorded more than once
during the medical history of a patient, it is unclear how to
handle the temporal nature of such data. One possible solution
to address the high-dimensionality is to limit the analysis to a
small sample of clinical measurements with high prevalence,
which however may severely limit the predictive power. Simi-
larly, the problem of handling temporality may be addressed by
only considering a short time-window in the medical history

1http://www.who.int
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of the patients, which again may result in models with low
predictive performance, as such an approach will not exploit
one of the most important aspects of EHRs, namely the ability
to consider the full medical history of a patient. One way of
addressing this, is to construct hand-crafted rules and heuris-
tics, which can be used to derive new features [8]. Another
aggregation-based alternative, evaluated by Zhao et al. [36],
is to represent clinical measurements using various summary
statistics, such as measurement averages (mean and mode for
numerical and categorical variables, respectively), the number
of measurements and the existence of measurements. The main
conclusion in that study is that simply counting the number of
measurements during the medical history leads to the highest
predictive performance of the considered alternatives [36].
One drawback of such representations is, again, that they
only consider a summarized snapshot of the medical history.
Under such situations, where multiple variables evolve over
time, sequence classification [33] has emerged as a potential
approach to handling time evolving events (data series), e.g., to
classify electrocardiograms (ECGs) [20], [32], to provide early
diagnostics [13] and classifying biological sequences [11].

For numerical sequences, e.g., blood pressure or temper-
ature, the shapelet [34] has been introduced as an important
primitive for sequence classification. A shapelet is a phase-
independent, i.e., location invariant, sub-sequence of a longer
time-series used as a local primitive for classification. In
this setting, the idea is to find the closest matching position
within each time-series to a shapelet and use this distance as
a discriminatory feature. For sequence classification, several
approaches have been proposed, e.g., shapelet-based decision
trees [34], logical combinations of shapelets [24] and shapelet-
based transformations [15], [23]. To improve predictive perfor-
mance, and to support multivariate sequences, the generation
of forests of randomized shapelet trees (RSF) [21] has been
introduced as a less computationally costly alternative.

Although a random shapelet forest can handle multivariate
numerical sequences [21], medical data, as pointed out earlier,
often contain disparate types of clinical measurements with
high missing rates, i.e., the measurements are recorded only
for a small fraction of the patients. In this study, two extensions
to the random shapelet forest, which we call the random
pattern forest (RPF), is explored to address these limitations,
i.e., to support heterogeneous and multivariate data series
where some sequences (measurements) can be missing from
the medical history of a patient. Hence, the purpose of this
study is two fold. First, we explore the impact of temporality
when predicting adverse drug events extracted from a real
database of electronic health records. Second, we empirically
evaluate the proposed extensions, in terms of the trade-off
between precision and recall (F1-score) and the accuracy of
the predicted probabilities (Brier score), for both the proposed
method, which models temporality, and for a baseline method
based on sparse and aggregated features, which does not.

The remainder of this paper is organised as follows: in
Section II, we present background definitions and formulate
the problem of classification of heterogeneous event sequences.
In Section II-A, we describe the proposed method and in sec-
tion III, we present an empirical evaluation using 27 datasets
extracted from a real EHR system. Finally, in section IV, we
summarize the main conclusions and suggest directions for
future work.

II. BACKGROUND

The problem studied in this paper is classification (signal-
ing) of adverse drug events, and our focus is on providing two
extensions to the random shapelet forest to handle multivariate
and heterogeneous data series. More concretely, the task is,
given a set of medical records represented as d-dimensional
time evolving data series, where each dimension describe a
particular aspect of a patient record, e.g., blood pressure or a
sequence of prescribed drugs, we want to infer a classification
model that is able to correctly predict the presence of an
ADE for a previously unseen medical record. Formally, a d-
dimensional heterogeneous data series T = {T1, . . . ,Td} is
a sequence of d disparate attributes, such that Tki ∈ Dk,
∀k ∈ {1, . . . , d}, where Tk = {Tk,1, . . . , Tk,mk

} and Dk is
the (numerical or categorical) domain of the k:th attribute.
Furthermore, we assume that we have a collection of n
multivariate data series X = {(T1, y1), . . . , (Tn, yn)} which
defines a training set, where each data series is labeled with
a label yi ∈ Y and Y is a finite set of class labels, here
representing the presence or absence of a particular ADE.

A. Random Pattern Forest

As briefly introduced above, shapelets are local, phase
independent sub-sequences of univariate data series, i.e.,
shapelets are 1-dimensional numerical subsequences. Origi-
nally, shapelets were introduced as local primitives for classi-
fication, by considering the closest matching position within
each data series to a particular shapelet and use this similarity
as a discriminatory feature [34]. The first shapelet classifier
[34] embedded the extraction algorithm in a decision tree
achieving competitive classification accuracy. To improve the
classification accuracy of shapelet trees and reduce learning
time, an algorithm for generating ensembles of randomized
shapelet trees was presented in [21]. Building on these ideas,
we here generalize the algorithm to support any numerical or
categorical pattern, given a well defined distance measure.

Ensemble methods rely on the combined voting of several,
relatively weak, models which all are assumed to perform bet-
ter than random guessing and to make somewhat independent
errors [6]. In the random pattern forest, randomization in the
generation of weak models is introduced both in the selection
of training instances and in the selection of patterns to use at
each node. The first is performed by employing bagging [5],
i.e., randomly selecting n instances with replacement from the
original n instances, duplicating some and excluding others.
The process results in two disjoint subsets, where each tree is
built using the larger in-bag instances and an unbiased estimate
of the running performance is given by the out-of-bag instances
[6]. The second randomization works by evaluating only a
small random sample of patterns at each node [21].

The random pattern forest construction algorithm consists
of two parts: ensemble creation and tree generation (see
Algorithm 1). The algorithm requires a set of training instances
E = {(T1, y1), . . . , (Tn, yn)} where each instance ei is de-
scribed by a d-dimensional data series Ti ∈ X and a class label
yi ∈ Y . Additionally, the algorithm requires two parameters:
the number of trees to generate (p) and the number of patterns,
e.g., shapelets, to examine at each split (r). In the ensemble
part, p pattern trees are constructed from an in-bag sample
drawn with replacement from E. The pattern tree construction
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Algorithm 1 The random pattern tree algorithm.

1: procedure PATTERNTREE(E, r)
2: if E is pure or other stopping criteria is met then
3: return the most frequent class label in E
4: end if
5: for i← 1, n do
6: p← SAMPLEPATTERN(E)
7: d← COMPUTEDISTANCE(p, E)
8: compute the information gain of splitting on p
9: end for

10: (pbest, τbest)← best pattern and distance threshold
11: PT ← create a node that test pbest

12: El ← instances with distance to pbest ≤ τbest
13: Er ← instance with distance to pbest > τbest
14: for both l and r as v do
15: PTv ← PATTERNTREE(Ev , r)
16: Attach PTv to the corresponding branch of PT
17: end for
18: end procedure

algorithm, which can be run in parallel for each tree to be
generated, starts by selecting r random patterns and, using the
pair-wise distances between patterns and data series, computes
an impurity measure2 and selects the pattern that reduces error
the most if split upon, cf., [21]. The data is subsequently
partitioned into two subsets according to the selected pattern
and distance threshold, i.e., one subset for those instances
with a distance less than the threshold and one for those
with a distance greater than the threshold. The tree generation
continues recursively to build sub-trees until the resulting
nodes are pure, i.e., containing instances of only one class. For
example, we obtain the univariate random shapelet algorithm
tree algorithm [21] if, in Algorithm 1, SAMPLEPATTERN

returns a random shapelet and COMPUTEDISTANCE computes
the euclidean sub-sequence distance. To support multiple di-
mensions, the sampled pattern also indicates which dimension
it is sampled from. More specifically, patterns extracted from
the k:th dimension is only compared to the k:th data series
dimension, e.g.,, the distance between patterns extracted from
patients blood pressure is only compared other patients blood
pressure. Finally, to handle missing attributes, the maximum
(observed) distance is assumed between a pattern and a series
that is missing.

B. Pattern extraction and distance measures

In this study, one numerical and two categorical distance
measures are evaluated together with three pattern sampling
strategies, out of which two are the same for all distance
measures and one is only defined for categorical data series.
The three proposed pattern sampling strategies, i.e., SAM-
PLEPATTERN, are:

• (1) Random 1d-data series: This strategy samples a
data series according to a uniform distribution, i.e.,
i ∈ U(1, n) and k ∈ U(1, d), resulting in a single data
series dimension Ti

k. This strategy is used for both
numerical and categorical data series.

2In this study the information gain is used [27], [34].

• (2) Random 1d-data series subsequence: A data series
subsequence of the kth dimension of a data series,
T , is a sequence of l contiguous elements of Tk,
denoted as Ts:s+l−1

k = {Tk,s, . . . , Tk,s+l−1}, where s
is the starting position and l is its length. This strategy
samples a data series subsequence from a random
data series, Ti

k, by uniformly selecting a length l ∈
U(1, |Ti

k|) and a start position s ∈ U(1, |Ti
k|−l). This

strategy is used for both categorical and numerical
data series.

• (3) Random singleton: From a randomly sampled
categorical data series, Ti

k, this strategy sample a
single element, vk = T i

kj according to a uniform
distribution.

The distance measure, i.e., the function COMPUTEDIS-
TANCE, is selected differently depending on the type of data
series and sampling strategy. For categorical data series, sam-
pled using strategy (1) and (2), we consider the edit distance
(denoted as ED) [35], which is defined as

d(Tk,T′
k)
(m,m′) =

⎧⎪⎪⎨
⎪⎪⎩

max(i, j) if min(i, j) = 0

min

⎧⎨
⎩
d(i− 1, j) + 1

d(i, j − 1) + 1

d(i− 1, j − 1) + 1(Tki �=Tkj)

(1)

where m = |Tk| and m′ = |T′k| and 1(Tki �=Tkj) is the indicator
function. This distance measure is selected to investigate the
temporal impact of categorical data. For numerical data series,
sampled using strategy (1) and (2), we consider the minimum
Euclidean distance (denoted as l2-norm) between the two (of
different length) sequences, i.e.:

d(Sk,T′
k)

=
m−l+1
min
s=1
{norm2(Sk,T

′s:s+l−1
k )} (2)

where norm2 = ‖a − b‖2, l is |S|, m is |Tk| and S is the
shorter of the two data series. Finally, for strategy (3) we
consider the zero/one distance (denoted as 0/1), where the
maximum distance is assigned if the sampled element is not
in the compared data series and 0 otherwise. Mathematically:

d(ek,Tk) =

{
1 if e ∈ Tk

0
(3)

This distance measure does not consider temporality, and is
only valid for categorical data.

III. EXPERIMENTS

A. Data source

This paper investigates the possibility to utilize temporal
patterns when predicting adverse drug events from EHRs.
The investigation is carried out using 27 clinical datasets (see
Table I), where the task is to detect care episodes where a par-
ticular ADE related diagnosis code3 should be assigned. The

3International Statistical Classification of Diseases and Related Health
Problems, 10th Edition (ICD-10).
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TABLE I: Description of the datasets. Each dataset is extracted from the Stockholm EPR corpus.

Care episodes (n) Predictors (d) Unique items (F )
Dataset Code description # Frac. of ADE # Sparsity # Sparsity

D64.2 Secondary sideroblastic anemia due to drugs and toxins 713 0.499 402 0.958 1451 0.983
E27.3 Drug-induced adrenocortical insufficiency 258 0.465 300 0.970 901 0.986
F11.0 Mental and behavioural disorders (MBOs) due to use of opioids: acute intoxication 486 0.422 345 0.971 1190 0.989
F11.2 MBDs due to use of opioids: dependence syndrome 1053 0.466 396 0.977 1780 0.993
F13.0 MBDs due to use of sedatives or hypnotics: acute intoxication 771 0.361 349 0.980 1320 0.993
F13.2 MBOs due to use of sedatives or hypnotics: dependence syndrome 268 0.493 209 0.942 870 0.981
F15.0 MBDs due to use of other stimulants, including caffeine: acute intoxication 238 0.378 199 0.965 562 0.985
F15.1 MBOs due to use of other stimulants, including caffeine: harmful use 208 0.481 195 0.944 646 0.978
F15.2 MHOs due to use of other stimulants, including caffeine: dependence syndrome 656 0.489 343 0.970 1344 0.990
F19.0 MHOs due to multiple drug use: acute intoxication 658 0.404 283 0.976 1137 0.993
F19.2 MBDs due to multiple drug use: dependence syndrome 1167 0.492 420 0.978 2008 0.994
F19.9 MBDs due to multiple drug use: unspecified mental and behavioural disorder 265 0.487 233 0.963 858 0.986
G24.0 Drug Induced Dystonia 187 0.337 220 0.971 623 0.986
G44.4 Drug-induced headache, not elsewhere classified 569 0.469 336 0.984 1079 0.993
G62.0 Drug-Induced Polyneuropathy 347 0.478 286 0.971 907 0.988
I42.7 Cardiomyopathy Due To Drug And External Agent 122 0.467 186 0.945 506 0.973
I95.2 Hypotension Due To Drugs 407 0.484 324 0.962 1139 0.986
L27.0 Generalized skin eruption due to drugs and medicaments 1802 0.478 627 0.981 2746 0.994
L27.1 Localized skin eruption due to drugs and medicaments 614 0.477 343 0.974 1420 0.991
O35.5 Maternal care for (suspected) damage to fetus by drugs 2192 0.500 401 0.990 2007 0.996
T59.9 Toxic effect of unspecified gases, fumes and vapors 397 0.343 229 0.972 820 0.990
T78.2 Adverse effects: anaphylactic shock, unspecified 559 0.453 348 0.984 1061 0.993
T78.3 Adverse effects: angioneurotic oedema 2660 0.431 503 0.989 2225 0.997
T78.4 Adverse effects: allergy, unspecified 12884 0.430 790 0.994 4185 0.999
T80.8 Other complications following infusion, transfusion and therapeutic injection 1554 0.499 452 0.974 2103 0.992
T88.6 Anaphylactic shock due to correct drug or medicament properly administered 371 0.488 294 0.964 1114 0.987
T88.7 Unspecified adverse effect of drug or medicament 4305 0.457 801 0.989 3696 0.997

ADE-related diagnosis codes used as the target variable were
selected based on prevalence (more than 100 care episodes)
and classified as indicating ADEs in a previous study [29]. The
27 datasets are extracted from the Stockholm EPR Corpus4,
which contains medical records for over 1, 000, 000 patients,
admitted to one of 512 clinical units within Stockholm City
Council during seven consecutive years (2007-2014) [9]. In the
database, health care episodes are described by both clinical
narratives and structured data regarding prescribed drugs5, di-
agnoses and clinical measurements. In this study, each dataset
is comprised of prescribed drugs, assigned diagnosis codes,
clinical measurements, e.g., blood pressure, creatinine levels
and albumin. In Table I, the number of care episodes and the
relative class frequencies are listed for each dataset, together
with the number of predictors, i.e., data series of ATC and
ICD codes and measurements, and their missing rate, i.e.,
fraction of measurements that exist per care episode. In the
last columns of the table, the number of unique items6 and
their sparsities are listed.

The empirical evaluation primarily concerns the evaluation
of two representations of this data, i) a bag-of-items represen-
tation, where each care episode is represented as a frequency
distribution over items, and ii) as multivariate data series,
where each care episode is represented by numerical and
categorical event sequences. The first representation ignores
temporal dependencies and is utilized by the Random Forest
[6] algorithm, while the second representation exploits the
temporal aspects using the novel random pattern algorithm
introduced here. The different approaches are compared in
terms of the trade-off between precision and recall (sensitivity)
and the accuracy of the predicted probabilities.

4This research has been approved by the Regional Ethical Review Board
in Stockholm, permission number 2012/834-31/5.

5Anatomical Therapeutic Chemical classification system (ATC).
6One item is a particular ATC code, ICD code or measurement.

TABLE II: The configurations of distance measures and sam-
pling strategies used in the experiments. For all approaches,
10, 25, 50 and 100 ensemble members were evaluated.

Approach COMPUTEDISTANCE SAMPLEPATTERN Note

RPF-ed(1) ED, l2-norm (1), (1) r = d ∗ 0.01
RPF-ed(2) ED, l2-norm (2), (2) r = d ∗ 0.01
RPF(3, 1) 0/1, l2-norm (3), (2) r = d ∗ 0.01
RPF(3, 2) 0/1, l2-norm (3), (1) r = d ∗ 0.01
RF – – mtry =

√
F

B. Experimental setup

To evaluate the predictive performance of machine learning
models, an independent test set should be employed. If there
are plenty of data available, the simplest and most common
approach is to split the data into two halves: one for training the
model and the other for evaluating the predictive performance
of the model. If data is scarce, which is true for many
medical domains, cross-validation is another viable approach
for estimating the predictive performance. Cross-validation
works by partitioning the data into k disjoint subsets, which
are iteratively used to train a model on k − 1 partitions and
evaluate the model using 1 partition averaging the performance
over k train and test iterations. A usual choice for k is 10,
which is also employed in this study. Since both the baseline,
i.e., Random Forest, classifier and the novel, Random Pattern
Forest, classifier are stochastic, the acquired measurements are
averaged over 5 rounds of 10-fold-cross-validation to minimize
the variability.

For the experiment, we consider four configurations of the
proposed pattern forest. As seen in Table II, all approaches
employ Euclidean distance (Eq. 2) for numerical data. For
categorical data, on the other hand, either the edit distance
(ED) (Eq. 1) or the 0/1-distance is used. For the first approach,
RPF-ed(1), full data series are sampled according to approach
(1) for both numeric and categorical data series and compared
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using ED; for the second approach, RPF-ed(2) subsequences
are sampled according to approach (2) and compared using
ED. For the third approach, RPF(3, 1), numerical data series
are sampled according to approach (1) and singleton values
(approach (3)) are sampled for categorical data series and
compared using the 0/1-distance (Eq. 3). Finally, the fourth
approach (RPF(3, 2)) samples categorical singleton values, simi-
larly to the third approach, but numerical data series are instead
sampled according to approach (2). For the baseline approach,
we consider the number of times each event is recorded as
feature since this was found to be the best performing feature
aggregation approach [36].

Both the the baseline and the proposed algorithm have a
few parameters to be set. Firstly, to investigate the effect of
ensemble size, i.e., the number of trees, an increasing number
of trees are generated for each approach. The considered
ensemble sizes are 10, 25, 50, and 100, where the largest
ensemble size has been suggested as an appropriately sized
ensemble [25]. Secondly, for the baseline approach the number
of features sampled at each node is set to the square-root of
the number of possible features and for the novel approach,
the number of sampled pattern, at each node, is set to 1% of
the available dimensions (see Table II).

The most commonly employed metric for evaluating the
predictive performance of machine learning models is the
percentage of correctly predicted examples, i.e., the accuracy.
However, in many cases, e.g., when the the cost of true
positives and false negatives are unknown, the precision (p =
tp/(tp+ fp) and recall (sensitivity) (r = tp/(tp+ fn)) allow
for a more meaningful comparison. The F1-score captures the
trade-off between these and is defined as F1 = (2pr)/(p+ r).
Finally, when evaluating different alternatives, e.g., whether
a patient has an ADE or not, the accuracy of the predicted
probabilities is often as important as the overall accuracy. One
commonly employed metric when assessing the accuracy of
probabilities is the (mean) squared error, also known as Brier
score [7]. Let ci be the true class vector of an instance and
cij = 1 if yi = cij and 0 otherwise. Furthermore, let pi be a
vector of probabilities assigned by the classifier to each class
for the i:th instance, then the square error is defined as:

1

n

n∑
i=1

‖ci − pi‖2. (4)

By decomposing the mean squared error into two terms,
the bias and the variance, it is possible to investigate what
explains the differences in predicted performance. Given the
true class vector c of an instance and the mean probability
vector p̂μ, the mean square error of a random ensemble can
be defined as (cf. [4]):

1

p

p∑
t=1

‖p̂t − c‖2 = ‖c− p̂μ‖2 +
1

p

p∑
t=1

‖p̂t − p̂μ‖2 (5)

where p is the number of members in the ensemble. In the
decomposition, the first term on the right hand side is the Brier
score and the second term the variance. Hence, in an ensemble,
one wants to minimize the squared error while increasing the
variance.

To detect if there are any significant differences in pre-
dictive performance, as measured by F1-score, brier score
and variance, between the different approaches, the widely
accepted non-parametric Friedman test based on ranks over the
datasets [10] is employed. To detect differences between pairs
of approaches, a Nemenyi post-hoc test is performed [10].

C. Empirical Results

The mean rank for the baseline approach (RF) and temporal
approaches are shown in Table III. To provide an overview of
the results, the average performance is given for each measure-
ment in Fig. 1 and 2. Note, however, that the statistical test for
determining the significant differences, are conducted based on
the ranks among the individual datasets and approaches.
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Fig. 1: Average F1-score for all approaches and ensemble size.

Examining the mean F1-score (Fig. 1), one can see that
the approaches utilizing temporal dependencies for categorical
data, i.e., RPF-ed, clearly perform the worst. The best per-
forming approaches consider the temporal aspect for numerical
features only, i.e., RPF. For all ensemble sizes, a Nemenyi
test reveals that both RPF-ed approaches are significantly
outperformed (p < 0.01) by all alternative approaches. No
significant differences can, however, be detected between RF
and RPF for any ensemble size.
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Fig. 2: Average accuracy of the predicted probabilities (brier
score) for all approaches and each forest size.

Considering Brier score (Fig. 2), we can see that the
predicted probabilities are similarly accurate for both RF and
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TABLE III: Mean rank for the considered approaches, with regard to F1-score, Brier score and variance for all ensemble sizes.

F1-score Brier Variance
Approach 10 25 50 100 10 25 50 100 10 25 50 100

RPF-ed(1) 3.79 3.87 3.74 4.12 4.08 3.93 4.08 4.08 2.00 2.11 2.07 2.11

RPF-ed(2) 4.40 4.16 4.37 4.57 4.15 4.23 4.12 4.23 1.92 1.66 1.74 1.66
RPF(3-1) 2.33 2.12 2.25 2.46 2.41 2.67 2.41 2.38 3.18 3.40 3.40 3.37

RPF(3-2) 2.09 2.31 1.98 1.74 2.41 2.23 2.38 2.41 3.29 3.22 3.14 3.25
RF 2.37 2.51 2.64 2.09 1.97 1.97 2.04 1.93 4.59 4.59 4.62 4.59

RPF, but significantly less accurate for RPF-ed. Indeed, a
Friedman test shows that the observed differences deviate
significantly (p < 0.01) from what can be expected under the
null-hypothesis of no difference. More specifically, as seen in
Table III, while both RPF and RF significantly (p < 0.01)
outperform RPF-ed for all ensemble sizes, there is no sig-
nificant difference between the approaches that consider the
temporality for numerical data series and the baseline approach
that does not take temporal patterns into consideration.
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Fig. 3: Average variance of the predicted probabilities for all
approaches and for each ensemble size.

Finally, in Fig. 3, the variance part of the mean square
error of predicted probabilities in Eq.5 is shown. A Friedman
test reveals that all deviations are significant with a p-value
< 0.01. A Nemenyi test shows that, for all forest sizes,
the differences when comparing RPF-ed to RPF and RF
are significant (the first has higher variance than the latter).
Conclusively, any benefit of the introduced novel approach
which considers temporal numerical data series, compared to
the baseline approach with regard to F1-score, can be attributed
to the fact that the novel approach increases the variance of
the ensemble without simultaneously increasing the bias too
much compared to the baseline approach. From a qualitative
perspective, one can see that the novel approach outperform
the baseline for predicting conditions that can be detected
from sudden changes in various medical measurements. For
example, the trade-off between precision and sensitivity for
predicting drug induced adrenocortical insufficiency (E27.3)
is improved by 5% points compared to the baseline. For other
reactions, where sudden changes in measurements cannot be
detected, e.g., generalized skin eruption due to drugs and
medicaments (L27.0), the predictive performance is on the
other hand decreased by 3% points. Hence, while the general
predictive performance is not significantly increased by the
proposed method, for certain types of ADEs it can improve
the detection rates.

IV. CONCLUDING REMARKS

In this paper, a novel ensemble approach, which extracts
and compares temporal patterns in a decision forest, is empir-
ically evaluated for cases where the task is to predict whether
or not a health care episode should be assigned an ADE related
diagnosis code, based on data extracted from an EHR database.

The empirical results show that models that take into con-
sideration temporal patterns for numerical data series, perform
better than the baseline approach, which ignores temporality.
However, considering the temporality of categorical data series
does not seem improve predictive performance, as measured
by F1-score. One reason for the poor result when utilizing
categorical temporal patterns, might be the fact that the order
in which drugs have been prescribed and diagnoses assigned
does not reveal any additional information. For numerical
measurements, the effectiveness of treatment and also possible
negative effects of drugs might on the contrary be revealed by
the evolution of such measurements.

Although the result does not clearly show that the pro-
posed approaches for considering temporality when predicting
adverse drug events significantly outperform the baseline ap-
proach, which ignores the temporality, when measuring the F1-
score and Brier score, the study highlights the importance of
investigating new ways of handling the temporality of clinical
measurements. As shown in the empirical investigation, by
decomposing the mean square error of the ensembles into two
parts, the Brier score and the variance, the differences in pre-
dictive performance of the different methods can be explained
by the fact that while ignoring temporality results in pattern
trees that are more accurate on average, considering tempo-
rality results in more variability in the individual predictions
leading to an overall increased performance. One suggestion
for future work is to investigate how the increased variability
can be utilized to improve the predictive performance.

One limitation of the current study, possibly affecting the
results, is the fact that while most patients have been prescribed
drugs and assigned diagnoses, most clinical measurements
are missing for a large fraction of patients, which could
explain the slight difference between the baseline approach
and the novel approach. Hence, for future studies, it would
be important to investigate the importance of both patterns
and dimensions when making predictions using the novel
approach. This is also important for increasing the acceptance
among practitioners. Another important direction for future
studies could be to consider alternative distance measures and
pattern sampling strategies that take into consideration domain
specific knowledge. One such approach, could for example be
to represent health care episodes as graphs of related events,
allowing for more elaborate representations.
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